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CO TINU TY OF BEST RECIPROCAL POLYNOMIAL APPROXIMATION ON [0, ~
)

by D D C
Charles B. Dunham and G. D. Taylor1

____ 

• t~ EVEL Introduction

Over the past ten years considerable progress has been made In studying

various questions concerning rational approximation on unbounded sets. To

a large extent the starting point of this effort was the paper of Cody,

Meinardus and Varga [6] and this has led to investigations of best approxi-

matlon properties in various settings [1—4, 8-9] and studies of the error

of best approximation [10-12].

In this paper we wish to study the best approximation properties of

strong uniqueness and continuity of the best approximation operator for

reciprocal polynomial approximation on [0, ~ of continuous positive
functions tending to 0 as x + ~. Thus, we define j

1>- +(1) C0[O, 
oc~) {f€ C[O, co): f(x) > 0, X E  [0, co) and Urn f(x) =

r ~~ (2) R~~= {—: P En~ p(x) > 0, x€ (O , u’)}, n > l ,p

where ii denotes the class of all algebraic real polynomials of degree < n.

Furthermore, define (~f II = sup{If(x)I: x € [0 os) } In what follows. In

this setting, It Is known that best approximations exist and are unique

[3, 4) and that the following - characterization theorem holds:

1Research sponsored by the Air Force Office of Scientific Research, Air
Force Systems Comand, USAF, under Grant AFOSR-76-2878C and by National
Science Foundation under Grant MCS-78-05847.
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THEOREM 1 [4]. Let f € C~[0, o) ‘~.. R~ with n > 1. Then is the best

approximation to f from R~ on [0, ~o) 1ff

(I) (standard alternation) there exist (x1}!j~~o 0 < x0 < x1 < ... < ~~~~

such that (f(x1) - p*(x1)
i = - , i = 0, ... , n + 1 and

- p*(~1) 
- x1~1 p*(x 11) ‘ 

—

(II) (nonstan dard alternation) 3p* < n  — 1  and there exist

0 < x0 < x1 < ... < x,~ such that f(x1) 
- 

p*(
1
x) (~~)

“
~ h r  — 

~~~hI

In both cases the points {x1} are called extreme points. Also, we

wish to note the for n > 1, p~ cannot be a constant. Indeed, since
• f(x) > 0 for all x E [0, CD) and u r n  f(x) = 0, then in order for the

X4CD
reciprocal of a constant, ~~ to be a best approximation to f, we must

have that c~ = ~~where M = max f(x). Since f(x) + 0 as x + we can
x>O

find x0 > 0 such that f(x) < M for x > x0. It is then easilty seen

that for p*(x) = E(x — x0) + c~ with € > 0 and suffic iently small that

Hf - < Hf - by a straightforward continuity-compactness

argument.

In addition, it has been shown in [3] that if € R,~, is the best

approximation to f € C~[O, °‘) from R~ with ap* = n then both strong

uniqueness (i.e., 1ff - 
~~ll 

— II~ 
- 

~~~iI .~~. ~ 
- 

~~il i = y .(f ) > 0

for all ~-~~R~) and Lipschitz continuity of the best approximation operator

at f(1.e., ll~~ 
— 

.~~ ~~ 
(if - 

g( (  ~ = @(f) >0 , g e C~[O, as) and the
g g

best approximation to g from R~) hold. Furthermore, it was shown in (33
AIR FORCE 0FFIC~E OF SCIENTIFI C RESEARCH (AFSC)
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that for each f whose corresponding best approximation from ~~ ~~,

satisfies ~p* < n — 2 the strong uniqueness theorem cannot hold. In

this present paper we shall prove that if f e C~[O, ~.) has E RI!~ 
as

Its best approximation then (I) if ap* < r, - 2 (i.e. is deficient

of order two or more ) then the best approximation operator is discon-

tinuous at f and (ii) if ap* = n - 1 then the best approximation operator

is continuous at f. It remains open as to whether or not a strong

uniqueness theorem holds in the case that ~p* -

Main Results

In this section we state and prove our main results. The first

result establishing the discontinuity of the best approximation operator

Is given in two parts. The first theorem will treat this problem for

the case that either is deficient of order three or more, or when

is deficient of order two and f - possesses a standard alternating

sequence. In this case we can prove even stronger results concerning

the discontinuous behavior of the best approximation operator. The

second theorem wil l treat the discontinuity of the best approximation

operator when Is deficient of order two with only nonstandard alter-

nation holding for f - ~!&. Our final result will be to prove that the

best approximation operator Is continuous whenever is deficient of

order one. • -

THEOREM 2. Let f E C~EO, •) ‘~~ and 
~ R~ be the best approximation

to f from R~. Further, assume that ~~ c n - 2 and that If ap* ~ — 2
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then f - possesses a standard alternating set. Then, given € > 0

there exists 6 > o, fP1) C R,,~ and ~~~~~ ~ 
C~[O, ~) such that each

9k has as its best approximation from ~~ 9k converges uniformly to

f on [0, ~) and o < Il-v - _i
~ii < € for all k.

~

REMARK. This theorem establishes that not only is the best approximation

operator discontinuous at f but, in fact, that it is also not possible for

a local (relative to ~~) strong uniqueness result to hold.

Proof. Set E = f(f - > 0 and assume without loss of generality that

£ < ~
.. Set 6 = ~~~. Since we are assuming throughout this paper that n > 1,

we have that p*(x) Is not identically equal to a constant which impl ies

that lim p*(x) = ~~. Select B > 0 such that f( x )  < c and p*(x) > for

all x > B. Set ek = (~
- + p*(k)) and note that for k > ~, p*(k) > ek.

Define 
~k 

n~ by

= ek + (p*(x) - ek)[(
~ 

- 1)2 + p*(k) ek~’ 
k > 8.

Since for all x > ~ p*(x) > ek, we have that (p*(x) - ek)[(
~ 

- 1)2 + p*(~~
_e
k 

> 0

implying that 
~~~ 

> ek > for x > B.

Next, observe that ek ÷ as k + as and (
~~ 

- 1)2 converges uniformly

to 1 on [0, B] as k + ~~. Thus, 
~k 

converges uniformly to p! on~(O, ~ as~~~~ .~ion k r
k + as• Now, let - 

~T1~J ~~~~~
~~~~~ . TAB

mln( mm f(x), mm 
~
, c) J~~ t i f i c  t ion - 

_:

x(O,B] x.(O,ø] ~ ______________

By
_____________________

Distribution/.._.

Ave ilabi~J~t~ ..C ’deS
• Avail and/or
• D~ st spec ial
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• 
!Pk

and select p > 8 such that for k > p, max (x) - p*(x) I < This
xe(O,B)

‘ - > 0 for all x € [0, 8] and k > p.implies that 
~~~~ 

—

Hence a— ER for k > ~ as pk(X) > 0 for all x 6(0, 0).—

• Now, since pk (k) = 2ek we have that 
1 1 — —— p*(k) — — 6. Thus ,

1 1
- > 6 for all k > p. Also, for k > p we have that

i i  1
IPkrX)

- - p*(x)J <
~~~~ 

< c for x e [0, 8]. In addition , for x B we have

_____ 
C and ~ c for k > p. Hence ~~~ - ~~~ II < € as claimed .that p*(x) < pk(x

Finally, define 9k’ for k ~ p, by

+ 
__l 

- p*(x) ’ x 
~ [0, 8]

g~(x) = ~f(x), 
~~~ 

x> B +

with endpoint values f(B) + pk(8) 
— and f(84f) , x

Clearly, 9k ~ C(O, as) , k > p and since f(x) + - *~x) > f(x) - ~~~~> 0Pk(x) p

for xe [0, 8] we have that 
~~~ 

C~[0, as) for k p. Since f(B)t ~ -
Pk(B) p*(8~)

c f(B) + 
~~~

< f(s) + ~~~.c f(s) + ~~~~~ and f(8 + 
~ ‘) <~~ we have that

< ~E for x € (
~
, a + 1~~1ying gk(x) ~~ for x ~ ~ . Also,

• 
~~~ 1 

____  ____

~~— - ~wlI c~~ Implies that c + for x ~ ~. From

this It follows that 19k(x) - c for x > ~. In addition, for

• for x€(O, a] we have that gk(x) - ~ f(x) - and this implies
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• that g - 
~~~~ 

exhibits the same alternating behavior as f - on (0, as) .

Thus, If f — has a standard alternating set so does - 
~~~~ 

Implying

that is the best approximation to 9k from R~ on [0, o ) .  If f -

possesses only a nonstandard alternating set then so does - ~~~~ Since

In this case we must have that 3
~k 

< n - 3, we must have that apk < n - 1

Implying once again that -i-- is the best approximation to from R~ ~n

[0, as). Since it is clear that 9k converges uniformly to f on [0, as),

the proof is completed by relabeling the sequences and

as ~~~ !_ }CD and 
~~k~~~l’ 

respectively.
k=l •

For the case that ~p* = n — 2 and f — has only a nonstandard

alternating sequence we have the slightly weaker theorem:

THEOREM 3. Let f € C~[O, as) ‘~~ R~ and € R,1 be its best approximation

from R~. Further, assume that ap* = n - 2 and f - possesses only a

nonstandard alternating set. Then there exists {
~

—}
~
‘ c R~ and 

•

~
9k~k~’l ~ 

C~[O, as) such that for each k, Is the best approximation to

t 9k from R~ on [0, as), 
~ conver~ s uniformly to f on [0, as) and

11* - ~~~ iI ‘ where E = h f  - 
~~~ hI > 0.



Proof. Select B > 0 such that p*(x) >~~~~, f(x) <iand p*(x) Is monotone

increasing for x > B. For k > ~~, define 
-

Pk(X , t) = t +  (p*(x) - t)[(~~- 1)
2 + p*(k) - ~~ 

O < t < t, x > O .

Note that pk(x , t) is continuous on [0, a.) x (0, 
~~
]. Define

h(t) min{pk(x , t): x ~ [8, 2k]} and observe that h is a continuous
function of t, 0 < t <4 ~. In addition , h(O) = minf p*(x)(~. - 1)

2: x € [8, 2k]} = 0

as k > ~ and that h(~) = min{~ + (p*(x) — 
~~~~~~~~~ 

— 1)2 + Ep*(k) — 1]: x € [a,2k]}4

as p*(x) > on [8, 2k]. Select ek e. (0, ~
-) so that h(ek) = .

~~~. Thus ,

• pk(X, ek) >~~~ 
> 0 for x E [8, 2k]. Observe that pk(X, ek) converges

e
unifornly to p*(x) on [0, 8] as k + a. since 0 < ek *IkI . ~ o andp~~~, ek

(.
~~ 

— 1)2 converges uniformly to 1 on [0, 8] as k + a..

Next, let 
- 

• • • . • -

~ min( mm f(x), mm 
~~
, ~

) > 0.
xc(O,8] x€[O,~] 

P x

Select p > B such that k > 
~ Implies that ~‘E> B, k > 1,

ek) 
- ~~(~Jj : x € (0, afl <9. . Thus, for k > u, 

~k~~’ 
ek) 

~~~~~~~~ ~~~

for all x £[O, a]. This implies that for k > p, 1 is positive
- 

Pk(x, ek)

and converges uni formly to p*~x) 
on [0, a]. In addition, for k > 

~ 
and

we have pk~~’ 
ek) ~

ek + (p*(x) - ek)[(—j— 1)2]

• > e k + ~(p*(x) - ek) .~.~ p*(x) >~~ as p*(x) >~~ for x > $. Since

LI
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1 x e [8, 2k]} = E we have that If tk E [8, 2k] Is suchIflaX(
pk(x, ekj

1that pk(tk, ek) 
= E then tk > 1E for k ~ ~.

• Next, note that for x > k > p, pk(X , ek) is a monotone increasing

ek )function of x and that Pk(2k, ek) = ek + (p*(2k) — ek)(1 + p*(2k) - ek

> p*(2k) > ~~
-. Thus, 1 

ek) 
< for x > 2k. Suninarizing, we have

~k 
(x,

shown that 1 
< for xe  [0, ,t~ , 

~k~~’ 
ek) 

<~~ for x >2k and
~k~’~’ 

ek) 
— 4

1
< E for x € [ik~, 2k] wi th tk E [/V, 2k] a point at which the value E

~k~~’ 
ek) —

is attained.

Next, define ak by E - ak = max{(~ (x ek) 
- f(x)): x ~ [8~ 2k]} .

Since f(x) < for x > 8 and p ( t~ ek)
= E we have that E - > E - f(tk)

implying that 
~~~~

> f (t k ) 
~ 

Let y~€ [e, 2k] be such that

~~~~ 
ek) 

- 

~~~~ 
= E - ak for each k > p. Since pk(X) ek) 

<~~~ for

x ~ [a, ~‘E) we have that € [v ’F~, 2k]. Also, since f(tk) + 0 as k + a.

(as tk + cmi) it follows that -* 0 as k + as• Noting that f(x) < for

X E [B, c’) and that < for x > 2k we have that - 
pk(x , ekJIPk(X, ek

1 
___________< E for x € [a, as) and k > p. Al so, since 

Pk(tk, ekj 
= E and p*~tk) ~

we have that ((i- ~ > IPkltkmi ek) - p*(t k )I ~~

1 . 

-

__________ -_ .- -.
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Now define 9k by (for t~. p)

1 
__________ __________f(x) + 

Pk x, ekJ 
- p*&T’ 

X ~ [0, 8], jf(x) 
— 

_____ I < E -(x)I —

1 
, x~~ [0, 8] ,  c(x)E _ a

k + pk(x,e k) ~~p*(x) > E c1k

1 1—E + + 

~~~~ 
ek) 

X ~ [0, a]~ f(x) - 

p*(xJ < -E +

X > $ + ~~_-

linear on [a. a + .
~-] with endpoint values f(8) + 1 1

Pk(85 ~~~ 
— p*(B)

and f(8 +

Observe that g~(x) > 0 for all x > 0. Indeed, for x E [0, a] wi th

f(x) - 
~~~~~~~~ 

< E - ak we have that = f(x) + pk (x , ek) 
- p*(x) ~ f(x)

> 0. For x € [O, a] with f(x) - 
p*(X) > E — ak,  g~(x) = E - 

~k +

~k~~’ 
eki

> + 1 
> 0 and for x € [0, a] with f(x) - p~4x) 

< — E + 
~k’— 8 

~k~~’ 
ek)

= -E + ak + 

~k~’~’ 
ek) 

= -E + a k + 1 
+ (x) ~ f(x) -p*(x) pkcx, e~J 

- 
p*

> 0. Since f(s) + 1 1
Pk(85 ek) 

- 

~~~~ 
f(8) - ~~.~~ - > 0  and f(a + ~-) > 0

we have that g~(x) ‘ 0 on (8, a + 
~-] and f inal ly  9k is positive on [a + 

~~
, ~

)

as f is. To see that g~(x) Is continuous on [0, ~) one must only check on
(0, a] as for x > B it is clearly continuous. However, on [0, a], gk(x)
is simply the truncation of f(x) — p*IxJ to the range [—E + 

~k’ 
E — ak] plus

the continuous function showing that 9k€ C~EO, 
cmi)

- ~k~” 
ek)
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Next, let us consider (g~(x) - 
1 Note that by construction

~~~~ 
ek,

— 

~k’~~ 
ek)I ~ 

E - ak for xe (0, a] and that, If (x 1}~~0 wi th

c x1 < ... < x~ is a nonstandard alternating set for f - then we

must have that x~ < a and

- 

~k~~i’ 
ek) 

= sgn(f(x1) - p*~x.)
)(E - ak) = (-1)~~~(E - Uk).

Next, on [a. 8 + 
~] we have that f(a) ~ ~~~, 

f(~ + 
~~
.) 

~ . 
and 

~
pkt8 ,ek) 

-

so that gk(8) < and g~(a + ~
-) 
~ ~~. Thus, gk(x) < on (a, a + -k.]. Also,

recall that , 
1 

~ <ton [0, vc] so that 1~k~~ 
- ~ 1 

~Pk~
x, ek, Pk~

x, ek,

(a~ a + ~.]. Finally, we noted earlier that ~f(x) - p(x
1 
ek)i ~ 

E - Uk on

[a. .m) so that Jg~(x) — ~ 

1 
< E — Uk on [0, a.) . Since there exists

PktX, ek,

• 
~k 
e (IV, 2k] at which - 

1 = -(E - Uk) we have that 9k -
~k~

’k’ ek)

• possesses a standard alternating set at the points x0 < x1 < ... < x1~ <

and thus _L Is the best approximation to ~ from R on (0, as). Finally, it
• 

~k

Is a straightforward argument to prove that 9k converges uniformly to f

Thus, once again reindexing the sequence {—}~~ gives the desired result.
P

• Next, 
•
we wish to show that if f € C~(O, as) has as Its best approxima-

• tion from R~ with ap* = n - 1 then the best approximation operator is

continuous. This we do in the following theorem. 
-
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THEOREM 4. Let f € C~[0, “ ) ‘~~ R1~ and let be its best approximation from

on [0, ~) with ~p* = n - 1. Then, the best a~proximation operator is

continuous at f.

CD +Proof. Let C C0[0, c.) wi th + f uniformly on [0, a.). Further ,

let eR be the best approximation to on [0, ~) for each k. Then,
I’

we must prove that - diII + 0 as k + ~~. Let us first note that

- < llg~ 
- implying that Urn sup ‘1~ k - < Urn sup hI~~~~ -

= h f  — j~ill 
= E. Also , E = h f  — 

~~w hI ~~. 
fif - 

~~~~
I I ~~~. 

(If - g
~j~ 

+ -

implying that E = u r n  inf(E - (( f - 
~k1’ < Urn inf ((~~ 

- 
~~

— (( . Combining

these results gives that u r n  — = E. In addition, since
k.. ~k -

E < (If — 
~~— Ii ~~. ((f - g~j f + IIg~ — we also have that u r n  f (f — = E.
k k k ,co k

Next, fix yE (Q, co) such that f(y) = max{f(x ) : x e(0 , m)}. Then

since •a constant cannot be a best approximation to f from Rn on [0, a.) we
• must have that 2E c f(y). Select 6 > 0 such that for x61 [y—a,y+6]fl[0,as)

• 
~. we must have f(x) >~~<2E + f(y)) > 2E. Choose 8 such that k > a impl i es

that (If - _i
~iI <~~E. Then for k > a and x c  I, we have that

• 

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In addItion, observe that the inequalIty < M holds for all x ~ [0, as)

and k ‘ a. Let be a subsequence of 
~~~ 

Then, since ~ p
~

(x) 
~~~~~~
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for al l x E I, there exists a subsequence { p }  of such that p

converges uniformly to some 6 nfl on I. This implies that the

coefficients of p~ converge to the coefficients of ~ which in turn

impl ies that for each x E (0, a.), p (x) + j~(x). Thus , we must have

~~
- <  

~(x) ~~~~ 
on I and ~~~< ~(x) on [0, a). This last inequality shows

that ~ € R,~. Furthermore, for Xe [0, co) fixed, -

limj f (x) — < Urn II~ 
— 111 = E. Thus, — 

~-ll 
< E implying

I P

that ~ p~ by the uniqueness of best approximations from R~. Since

this is true for any subsequence 
~~~ 

of 
~~~ 

we must have that this

is also true for the full sequence 
~~~ 

That is, that 
~k 

converges

uniformly to p~ on I and pointwise on [0, a.). To complete this

argument we must prove that converges uniformly to —
~~~ on [0, a.).p

From the above discussion we have that -~ — converges pointwise to -~~~~p

on [0, cci) and, in fact, on any fixed closed interval [0, ~], a > 0,

converges uniformly to p~ (due to the coefficient convergence).

In order to establish this final fact, we must examine the

coefficient convergence in more detail. Thus , let

with a~_1 > 0 (here we are using our hypothesis that ~p* n - 1 and

p* € Rn) and let pk(X) = a~x~
’ + ... + a~ where we know that the leading

nonzero coefficient of must be positive. In addition , we have that

+ ajr as k + a. for .J = 0. L. ... ~~ n wher~ a~ 0. Thus, there exists

• 
-

y ~ B such that k > y  Implies that a~_ 1 > n;1 ‘ 0 and - a~( < 1 for

j= 0, ... , n - 2. Thus, given c > 0 there exists 6 > 0 such that
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• 
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~(x) = ~~
1x’~

1 
+ (a~_2 - + + (a~ - 1) >~~~~. Since 

~~~~ 
>~~(x)

for k > y and p*(x) > ~p(x) for all x > 6 we have that

1 
— 

1 1 I c
p1~(x) p*(x) 

~~ ~~~~ 
+ p*(x) < + 2 ~

for k > y and x > ~S. On [0, 6) we have that converges uniformly to p

Thus, we may select K > y such that k > K implies 
~p~~x) 

- p*(x ) i < £ for

all x ~ (0, 6]. Hence, for k K we have that - 
~~~~I I < £ implying

the desired result.

I

Concluding Remarks

Observe that the auestion of whether or not a strong uniqueness result

holds for the case that f € C~CO , a.) with its best approxir~ation from
satisfying ap* = n—i remains open. Likewise, the question of Lipschitz con-

tinuity of the best approximation operator remains open in this case.

A- second item of interest is that in ordinary rational approximation

on a finite Interval, nonstandard (i.e., fewer) alternation due to

degeneracy of the best approximation may be unimportant as the set of f

with degenerate best approximations is nowhere dense [5, 7]. If the

corresponding result that {f: the best approximation 
~~ 

€R~ has ap*

was nowhere dense then we could expect to be able to usually employ the

simpler theory of (8] for this problem. However, the continuity result
for degree n - 1 Implies that every f with nonstandard alternation and

best approximation 
~~

€ Rn wi th ap* = n - 1 has all g sufficiently close

with nonstandard alternation •nd best approximations of degree n - 1. In
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• this regard, an interesting question is to characterize those f for which

nonstandard alternation will occur. Some initial results in this direction

have been obtained by the second author and D. Leeming.
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